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Program Objective

• Identify high coding rate (>0.5) Low Density 
Parity Check Codes (LDPCC) for bandwidth 
efficiency on near-Earth satellites.

• Develop a Flight LDPCC encoder application 
specific integrated circuit (ASIC) for high data 
rates. 

• Subsequently, develop a ground ASIC LDPCC 
decoder.

• In parallel, develop field programmable gate 
array (FPGA) versions to help evaluate possible 
architectures and verify performance.  



LDPCC Background

• Shannon 1948 proved the Noisy Channel Coding Theorem based on 
the concept of “random coding.”  (The genesis of Coding Theory)

• Elias 1955 showed that randomly chosen parity block codes of long 
length can perform as well as any code. 

• Gallager 1960 invented LDPCC in PhD thesis based on a relatively
simple decoder.

• Largely ignored by the coding community until Mackay 1996 showed
that LDPCC have near-Shannon limit performance.

• Rediscovery prompted by the invention of Turbo Codes (Berrou1993).
• Large amount of computer generated (CG)-LDPCC based on semi-

random construction research since 1996.
• Kou, Lin and Fossorier 2001 presented the first structured LDPCC

based on Euclidean Geometry (EG) and demonstrated that random 
construction is not necessary to produce near-Shannon limit 
performance. (NASA/GSFC funded research) 

• Two EG-LDPCC were proposed for CCSDS standardization.  It is 
these codes that are chosen for Flight ASIC implementation.



Block Codes Basics

• Consider a binary field F2 =: ({0, 1} , +, *).
• Then F2

n =: the n-dimensional vector space over 
F2 where the elements are 2n n-tuples.

• Definition:  An (n, k) linear block code with data 
word length k and codeword length n is a k-
dimensional subspace of F2

n.
• The code rate R=: k/n
• Minimum distance of a block code dmin=: 

minimum weight or least number of ones of all 
codewords (except the all zero codeword.)



Block Code Encoding Process

• In matrix form:

c=uG

where,   
  u  is the information sequence of length k 
   c is the codeword of length n 
  G is the generator matrix of dim. k x n 



General Hard Decision Block Code 
Decoding Process

1.Calculate the syndrome (symptom of the 
corrupted codeword).

2. Identify it’s associated error pattern (select the 
pattern with the smallest number of bit errors).

3.Remove this error pattern from the received 
word to produce corrected word.



Syndrome Calculation

   s=rHT
 

 
where,   
    r is the received codeword of length n 
    s is the syndrome of length n-k 
    H is the parity-check matrix of dim. (n-k) x n

Syndrome is defined as:



General Soft Decision Decoding Process

• Also called maximum APP (MAP) decoding or maximum 
likelihood  decoding (when all codewords are equally 
likely).

• Based on samples from the symbol synchronizer.
• Calculate the Euclidean distance between received 

symbol with every expected codeword.
• Determine the most probable or the nearest codeword.
• Output that codeword.
• Complexity on the order of 2k real number calculations.
• Not practical except for very small k block codes.
• Provides greater than 2 dB performance improvement 

over hard decision decoding.



Large Block Codes Decoding Problem

• How to practically accomplish maximum 
likelihood or MAP decoding with large 
block sizes?

• Gallager’s answer:  LDPCC can achieve 
near-MAP decoding performance by 
inventing an iterative decoder whose 
complexity is proportional to the total 
number of 1’s in the H matrix.



LDPCC Definition

• A regular LDPCC is a linear block code whose parity check matrix H 
contains a constant number of 1’s per column and a constant 
number of 1’s per row.

• An irregular LDPCC has an H matrix with a variable number of 1’s
per column or row.

• Generally large block codes with the ratio of the total number of 
ones to the total number of bits in the H matrix to be a very small 
number (<< 0.5)

• Most LDPC codes are regular and irregular CG-LDPCC.
• CG-LDPCC requires on the order of n2 operations for encoding.
• EG-LDPCC are structured regular codes which are cyclic or quasi-

cyclic in construction.
• EG-LDPCC require on the order of n operations to encode.



Comparison to Turbo Codes

• Similarities
– Both codes are decoder centric coding techniques
– Both codes exhibit BER performance are near-channel capacity 
– Both codes have decoders that use a posteriori probability (APP)

metrics.
– Both codes use a form of Belief Propagation/Message Passing 

based decoding.
• Differences

– LDPCC aren’t concatenated codes
– LDPCC do not require an interleaver
– LDPCC do not use multiple Viterbi decoders
– LDPCC are inherently parallel and thus are faster to decode
– Some LDPCC have very low error floors



Relating G and H Matrices

• It can be shown that:

GHT=0

• Once G is defined then an H can be derived.

• The opposite case is also true.

• This is does not produce a unique solution.



EG-LDPCC Advantages Over CG-LDPCC

• Cyclic EG codes can be decoded with various algorithms, from hard-
decision (majority logic) to soft-decision (message passing) and 
weighted hard-decision.

• EG-LDPCC have larger dmin and therefore lower error floors < 10-10

BER
• Larger dmin also means better frame error rate (FER) performance.
• EG-LDPCC provide easy encoder design and lower complexity.

– Place and routing is simpler.
– Encoding consists of a chain of flip flops.
– Design of decoder is faster since computational elements are the

same.
– Decoding iterations can be phased or pipelined allowing for a 

smaller ASIC or FPGA.
• Lower encoder complexity means less demand on spacecraft power 

system which benefits size and weight.
• In general, EG codes require less iterations and can decode faster 

than CG codes.



LDPC Example
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LDPCC Decoder

• Decoder can be represented as a message passing algorithm based 
on a bipartite (Tanner) graph made up of check nodes and variable 
nodes.

• Number of check nodes is n-k and number of variable nodes is n.  
• Connections or edges between check and variable nodes are 

defined by a 1 in the parity-check matrix H.
• Messages which are extrinsic information based on APP are passed

along edges.
• A full iteration is defined as a cycle of message passing from the 

variable nodes to check nodes and back.
• The decoder is initialized by soft-decision information received 

codeword.
• Each full iteration is completed by a hard-decision syndrome 

calculation.
• If a syndrome is detected, another iteration begins. 
• If no syndrome is detected, a valid codeword is found and the 

decoder stops.



LDPCC Tanner Graph
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Selected EG-LDPCC

• Two codes:  EG-LDPCC (4095, 3367) (or shorten to 
(4088, 3360)) R = 0.822 and EG-LDPCC (8176, 7156) R 
= 0.875.

• dmin = 65 for EG-LDPCC (4095, 3367) and dmin > 7 for 
EG-LDPCC (8176, 7156).

• Both codes have been simulated to > 10-10 BER with no 
error floor.

• EG-LDPCC (4095, 3367) is a cyclic code and EG-
LDPCC (8176, 7156) is a quasi-cyclic code.

• Both codes can be encoded with a sequence of shift 
registers.

• Both codes have very fast iterative convergence.



EG-LDPCC (4095, 3367) Performance



EG-LDPCC (8176, 7156) Performance



EG-LDPCC Versus Standard Codes
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EG-LDPCC (4095, 3367) Measured
Performance



Status

• There are two parallel development tracks:  1. Flight ASIC encoder along 
with the ASIC decoder and  2. the FPGA encoders and decoders.  

• Currently, EG-LDPCC (4095, 3367) has been designed for the flight ASIC 
and has been simulated to > 1 Gbps operation.

• The encoder for EG-LDPCC (8176, 7156) is currently being developed. 
• Flight ASIC encoder fabrication containing both codes is scheduled to be 

completed by the first quarter of 2004.  
• The EG-LDPCC (4095, 3367) FPGA encoder as well as it’s FPGA Majority 

Logic decoder has been tested at 400 Mbps.  
• Currently, an EG-LDPCC (4095, 3367) FPGA Belief Propagation decoder 

has been designed and is being optimized for operating speed.  It’s testing 
will be completed by the end of August 2003.

• An FPGA encoder and decoder of EG-LDPCC (8176, 7156) will probably be 
completed by end of 2003.   

• The Belief Propagation ASIC decoders for EG-LDPCC (4095, 3367) and 
EG-LDPCC (8176, 7156) are undergoing an architectural study.  

• Fabrication won’t be completed until first quarter 2005.


